Aros Graphene-baserade termiska interfacematerial
Syfte och mål
Aros Graphene® är ett nyutvecklat joniskt hybridgrafenmaterial vars tillverkningsprocess är enkel och miljövänlig. Aros Graphene® är designat för att undvika hopklumpning av grafenflak och därigenom förbättra dispersion i matris. Termiska interfacematerial består av en matris av silikongel och värmeledande fyllmedel. De kan ta upp mekaniska toleranser och används för att leda bort värme från till exempel en komponent till en kylfläns.
Genom att använda Aros Graphene® som fyllmedel i termiska interfacematerial, tror vi att dessa kan uppnå en betydande förbättring av de termiska egenskaperna, jämfört med nuvarande teknologier.
Eftersom grafen uppvisar högst värmeledningsförmåga av alla material i naturen, finns det också potential för att nå högre värmeledning i förhållande till dagens kommersiella produkter. Förbättrad prestanda krävs inom elektronikindustrin för att utnyttja mindre och kraftfullare komponenter i framtida produkter.
FoI-projektet utförs i samarbete mellan Ericsson, Graphmatech och Nolato. Projektet görs i flera steg där vi gradvis bygger kunskap om hur Aros Grafen® interagerar i en värmeledande blandning. De tre huvudstegen är:
- Aros Graphene® och matrisinteraktioner
- Aros Graphene® som ytmodifierare av andra termiskt ledande fyllmedel
- Formuleringar av värmeledande blandningar baserade på Aros Graphene®
I projektet tror vi att vi kan visa ”proof-of-concept”, att ta resultaten till kommersiella produkter.
Resultat
Studiens huvudsakliga syfte var att testa om grafens höga värmeledningsförmåga kan utnyttjas i termiska dynor för förbättrad överföring av värme från komponenter till kylflänsar i moderna elektroniktillämpningar. Inledande försök gjordes med enbart grafen och därefter ökade komplexiteten gradvis genom tillsats av olika fyllmedel i de värmeledande materialen. Vi fann att de värmeledande egenskaperna hos grafen i stor grad beror på storlek, råmaterial och bearbetning av grafenpartiklarna. Aros Graph-processen, för funktionalisering av grafen, gav en mycket bra spridning av grafenet. Små mängder grafen gav en hög viskositet och resulterade i att användning av enbart grafen som fyllmedel inte gav tillräckligt hög värmeledningsförmåga, varför grafen fungerade bättre när det användes som tillsatsmedel. Genom grafenfunktionalisering av andra fyllmedel erhölls något förbättrade egenskaper jämfört med användning av rent Aros-grafenpulver. Funktionalisering är dock en komplex process som begränsar den kommersiella potentialen på kort sikt. För att skapa material med hög värmeledningsförmåga användes olika fyllmedel med matchande storlekar. Med tillsats av grafen ökade värmeledningsförmågan upp till 40%, med maxvärden runt 20 W/mK.
Första delen av studien uppnådde sitt mål och vi har erhållit en god förståelse för hur grafen kan användas som tillsats i termiska dynor, speciellt kunskap om spridning och förstärkning avvärmeledningsförmågan i enkla system. För material som kräver högre värmeledningsförmåga uppnåddes något lägre nivåer än målet på 30 W/mK. Följaktligen minskade fokuset på framställning av produktprototyper och deras verifiering. Överlag är resultaten dock tillräckligt bra för att vara av kommersiellt intresse, även om fortsatt optimering av både de värmeledande och mekaniska egenskaperna hos grafenförstärkta termiska dynor och deras tillverkningsprocesser kommer att krävas.
Huvudinsikten från projektet var hur viktigt det är med jämn kvalitet av grafenet och val av rätt fyllmaterial. På grund av sin höga inneboende värmeledningsförmåga har grafen sannolikt en framtid som tillsats i dynor inom elektroniktillämpningar. Inom Graphmatech och Nolato finns redan kärnkompetens och produktionsanläggningar för en potentiell kommersialisering av grafenförbättrade termiska dynor och möjligen kan en produkt finnas på marknaden inom ett år.